首页> 外文OA文献 >Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization
【2h】

Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization

机译:RFID网络规划优化的分层人工蜂群算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.
机译:本文提出了一种新的优化算法,即层次人工蜂群优化算法,称为HABC,以解决射频识别网络规划(RNP)问题。在提出的多级模型中,较高级别的物种可以由较低级别的子种群聚集。在底层,每个采用规范ABC方法的子种群并行搜索零件尺寸最优值,可以将其构建为高层的完整解决方案。同时,运用具有交叉和变异算子的综合学习方法来增强物种间的全局搜索能力。针对一组10个基准优化问题进行了实验。结果表明,与几种成功的群体智能和进化算法相比,拟议的HABC在大多数选定的基准函数上均具有出色的性能。然后将HABC用于在不同规模的两个实例上解决现实世界中的RNP问题。仿真结果表明,该算法在优化精度和计算鲁棒性方面优于RNP。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号